The Importance of Particle Size Distribution in Determining BMP Efficiency

Marcia Ferreira and Michael K. Stenstrom

UCLA Civil and Environmental Engineering Department
Acknowledgments

NSF Graduate Research Fellowship Program
Dr. Peter G. Green (UC Davis)
Prof. Stenstrom’s Ph.D. students (2005-2006 Winter)
California Department of Transportation (CalTrans)
Outline

- Stormwater Runoff Overview
- Detention Basin Study (2005-2006)
 - Particle Size Distribution
 - Metals Data
- Rational Design
Stormwater Runoff
Stormwater Runoff Problems

- Runoff Volume
- Runoff Water Quality
Stormwater Runoff Problems

Ballona Creek

Normal Conditions

Photos: Michael Stenstrom
Stormwater Runoff Problems

Ballona Creek

Normal Conditions

During a Storm

Photos: Michael Stenstrom
Stormwater Runoff Problems

Ballona Creek

Normal Conditions

During a Storm

Photos: Michael Stenstrom
Stormwater Runoff Problems

- Runoff Volume
- Runoff Water Quality

Goal: Estimate Performance of Treatment Units
Removal Rates

- Removal Rates are easy to understand
- The BMP Database Project Team has a list with 15 reasons not to use percent removal
Removal Rates

• Removal Rates are easy to understand

• The BMP Database Project Team has a list with 15 reasons not to use percent removal

Percent removal is primarily a function of influent quality.

Removal Rates

- Removal Rates are easy to understand

- The BMP Database Project Team has a list with 15 reasons not to use percent removal

BMPs with high percent removal may have unacceptably high concentrations of pollutants in effluent

Removal Rates

- Removal Rates are easy to understand

- The BMP Database Project Team has a list with 15 reasons not to use percent removal

Range of expected effluent quality concentrations is a much better planning and design tool than percent removal estimates.

Performance

Data Source: Overview of Performance by BMP Category and Common Pollutant Type [1999-2008]
Removal Rates

- By knowing the particle size distribution of the solids in the runoff, removal rates can be used in the selection process of a treatment unit.

- We will show this using a detention basin as a case study.
Caltrans Study
(2005-2006)

Storm Water Retrofit Pilot Study
A Scientific Study to Treat Storm Water Runoff
by Retrofitting Caltrans Right-of-Way using
Best Management Practice (BMP) Technologies

Technology Type:
Extended Detention Basin

An Effort Undertaken by:
Caltrans, NRDC, EPA, San Diego Baykeeper,
Santa Monica Baykeeper

213-897-8636
www.dot.ca.gov/hq/Environmental/stormwater
Detention Basin
Detention Basin
Detention Basin
Detention Basin
Detention Basin

Photos: Google
Detention Basin
Site Characteristics

- Catchment: 4,000 m²
- Vehicles Daily: 220,000
- Impervious Cover: 100%
Site Characteristics

- Catchment: 4,000 m²
- Vehicles Daily: 220,000
- Impervious Cover: 100%

INFLUENT

EFFLUENT
Site Characteristics

Catchment: 4,000 m²
Vehicles Daily: 220,000
Impervious Cover: 100%

Length: 30 m
Inside width: 3.3 m
Side Slope 1:2.8 m

INFLUENT

EFFLUENT
Traditional Efficiency Study
Total Suspended Solids

Mean of influent TSS is 127.25 mg/L Mean of effluent TSS is 25.17 mg/L

80% removal of solids
Total Suspended Solids

Mean of influent TSS is 127.25 mg/L Mean of effluent TSS is 25.17 mg/L
Particle Size Distribution Data
Particle Size Distribution

Nicomp Particle Sizing Systems – AccuSizer 780

- Autodilution
- Sensor Range: 0.5 – 500 µm
- Light Obscuration
- Measures voltage pulse, which is proportional to the particle maximum cross-sectional area
- Sample volume: 0.5 ml
Particle Size Distribution
Particle Size Distribution

Feb 27

Influent
Effluent

Particle Counts (#/ml)

Diameter (μm)
Particle Removal

<table>
<thead>
<tr>
<th>Diameter Range (μm)</th>
<th>Percent Removal (%)</th>
<th>All Storms (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>27-Feb</td>
<td>17-Mar</td>
</tr>
<tr>
<td>0.5-5</td>
<td>62</td>
<td>15</td>
</tr>
<tr>
<td>5-10</td>
<td>83</td>
<td>75</td>
</tr>
<tr>
<td>10-20</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>20-30</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>30-40</td>
<td>86</td>
<td>82</td>
</tr>
<tr>
<td>40-100</td>
<td>78</td>
<td>93</td>
</tr>
</tbody>
</table>
Metals Data
Concentration (μg/L)

mass of constituent by volume of runoff filtered

26 Measured Constituents

17 Constituents Above Detection Limit

Welch t-test comparison for influent and effluent concentrations for each size fraction: statistically significant with exception of the dissolved phase for 4 constituents
Concentration (µg/L)
mass of constituent by volume of runoff filtered

Pb

Zn

Cu

Ni

K

Na

< 0.45µm 0.45-8 µm 8-20 µm >20 µm
Rational Design to Runoff Treatment Unit Performance
Removal Efficiencies

- For discrete particle settling, we can construct removal efficiency chart based on overflow rate.

- Assuming laminar flow, spherical particles with density 2.65 g/cm3, and temperature 20$^\circ$C.

$$\eta = \frac{V_p}{V_o} = \frac{g(sg_p - 1)d_p^2}{18\mu}$$
Sedimentation Removal Efficiencies

Overflow Rate

0.1 m/h
1 m/h
10 m/h
100 m/h

0.5 - 8 μm
8 - 20 μm
> 20 μm
Sedimentation Removal Efficiencies

<table>
<thead>
<tr>
<th>Storm Date</th>
<th>Rainfall (m)</th>
<th>Drainage Area (m²)</th>
<th>Volume (m³)</th>
<th>Length of storm (h)</th>
<th>Flow through device (m³/h)</th>
<th>Assumed volume (m³)</th>
<th>Retention time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-Feb</td>
<td>0.0475</td>
<td>4000</td>
<td>190.0</td>
<td>22</td>
<td>8.64</td>
<td>30</td>
<td>3.5</td>
</tr>
<tr>
<td>17-Mar</td>
<td>0.0048</td>
<td>4000</td>
<td>19.3</td>
<td>5</td>
<td>4.06</td>
<td>30</td>
<td>7.4</td>
</tr>
<tr>
<td>28-Mar</td>
<td>0.0168</td>
<td>4000</td>
<td>67.1</td>
<td>16</td>
<td>4.19</td>
<td>30</td>
<td>7.2</td>
</tr>
<tr>
<td>14-Apr</td>
<td>0.0109</td>
<td>4000</td>
<td>43.7</td>
<td>7</td>
<td>6.24</td>
<td>30</td>
<td>4.8</td>
</tr>
</tbody>
</table>

![Graph showing particle removal efficiency versus particle diameter for different storms.](image)

Overflow Rate:
- 0.02 m/h
- 0.06 m/h
- 0.29 m/h
Summary

- PSD is characteristic of each site
 - in certain locations, season might play a role

- We cannot talk removal rates without knowing PSD
 - we also need to know the chemistry and size fractionation of the pollutants of interest